پیش‌بینی شاخص سهام با استفاده از ترکیب شبکه عصبی مصنوعی و مدل‌های فرا ابتکاری جستجوی هارمونی و الگوریتم ژنتیک

Authors

  • تکتم حیدری دانشجوی کارشناسی ارشد مدیریت مالی، دانشگاه ارشاد دماوند، تهران، ایران
  • مریم دولو استادیار مدیریت مالی، دانشکده مدیریت و حسابداری، دانشگاه شهید بهشتی، تهران، ایران
Abstract:

هدف پژوهش حاضر پیش‌بینی شاخص قیمت بورس اوراق بهادار تهران با استفاده از مدل شبکه عصبی هیبریدی مبتنی بر الگوریتم ژنتیک و جستجوی هارمونی است. مربوط‌ترین نماگرهای تکنیکی به عنوان متغیرهای ورودی و تعداد بهینه نرون در لایه پنهان شبکه عصبی مصنوعی با استفاده از الگوریتم‌های فراابتکاری ژنتیک و جستجوی هارمونی حاصل می‌گردد. مقادیر روزانه شاخص قیمت بورس اوراق بهادار تهران از تاریخ 1/10/91 الی 30/9/94 جهت پیش‌بینی شاخص قیمت و آزمون آن استفاده می‌شود. دقت پیش‌بینی سه مدل شبکه عصبی عادی، شبکه عصبی هیبریدی مبتنی بر الگوریتم ژنتیک و شبکه عصبی هیبریدی مبتنی بر جستجوی هارمونی بر اساس میزان خطای پیش‌بینی ارزیابی می‌گردد. نتایج حاصله نشان می‌دهد دقت پیش‌بینی مدل‌های فراابتکاری ژنتیک و جستجوی هارمونی در دوره آزمون بالاتر از شبکه عصبی عادی است. همچنین پیش‌بینی مدل شبکه عصبی هیبریدی مبتنی بر جستجوی هارمونی در دوره آزمون نسبت به مدل شبکه عصبی مصنوعی هیبریدی مبتنی بر الگوریتم ژنتیک از دقت بالاتری برخوردار است. This study is aimed to predict the price index of Tehran Stock Exchange using hybrid Artificial Neural Network (ANN) models based on Genetic Algorithms (GA) and Harmony Search (HS). The most relevant technical indicators as inputs and the optimal number of neurons in hidden layer of Artificial Neural Network are achieved by metaheuristics including Genetic Algorithms and Harmony Search. Daily price index of Tehran Stock Exchange from 21 December 2012 to 21 December 2015 applied to predict and test stock index. The accuracy of forecasting of three models including Regular Artificial Neural Network model, hybrid neural networks based on GA and hybrid neural networks based on HS is evaluated by the prediction error. The results show that the accuracy of prediction in Metaheuristics models such as Genetic Algorithms and Harmony Search in test period is higher than normal Artificial Neural Network. Also prediction by hybrid neural network model based on harmony Search during the test period compared to hybrid Artificial Neural Network model based on Genetic Algorithm is more accurate.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

مقایسه پیش‌بینی شاخص سهام با استفاده از مدل‌های ترکیبی مبتنی بر الگوریتم ژنتیک و جستجوی هارمونی با شبکه عصبی معمولی

هدف پژوهش حاضر مقایسه پیش‌بینی شاخص سهام با استفاده از مدل‌های ترکیبی مبتنی بر الگوریتم ژنتیک و جستجوی هارمونی با شبکه عصبی معمولی است. مربوط‌ترین نماگرهای تکنیکی به عنوان متغیرهای ورودی و تعداد بهینه نرون لایه پنهان شبکه عصبی مصنوعی با استفاده از الگوریتم‌های فراابتکاری ژنتیک و جستجوی هارمونی تعیین شده است. مقادیر روزانه شاخص قیمت بورس اوراق بهادار تهران از تاریخ 1/10/91 الی 30/9/94 جهت پیش‌بی...

full text

شناسایی دستکاری قیمت سهام از طریق مدل ترکیبی الگوریتم ژنتیک – شبکه عصبی مصنوعی و مدل SQDF

هدف این پژوهش، شناسایی دستکاری قیمت سهام در بورس اوراق بهادار تهران می­باشد که از طریق مدل ترکیبی الگوریتم ژنتیک-شبکه عصبی مصنوعی (ANN-GA)[1] و مدل تابع تفکیکی درجه دوی تعدیل شده (SQDF)[2] انجام گرفته است. در این پژوهش از متغیرهای قیمت، حجم معاملات و سهام شناور آزاد برای تطبیق نتایج مدل و داده­های واقعی از دستکاری قیمت استفاده شده است. در مدل ترکیبی ابتدا داده­های مربوط به 316 شرکت از نخستین رو...

full text

مدل‌سازی فرایند تبدیل خشک متان به‌کمک پلاسما با استفاده از شبکه عصبی مصنوعی و الگوریتم ژنتیک

 پیش‌بینی فراورده‌های (هیدروژن و کربن مونوکسید) تبدیل خشک متان به‌کمک پلاسما در فشار جوی با استفاده از شبکه عصبی مصنوعی شبیه‌سازی شد. داده‌های تجربی موردنیاز برای مدل‌سازی شبکه عصبی مصنوعی از یک واکنشگاه پلاسمایی تخلیه کرونا جمع‌آوری شد. اثر عامل‌های فرایندی (توان تخلیه پلاسما، دبی خوراک ورودی) بر کارایی تبدیل متان و گزینش‌پذیری نسبت به فراورده‌های مورد بررسی قرار گرفتند. شبکه پیش‌خور با الگوری...

full text

استفاده از ترکیب الگوریتم ژنتیک و شبکه های عصبی مصنوعی برای پیش بینی نیروی گاز گرفتن از روی سیگنال الکترومایوگرام

Human mastication is a common rhythmic behavior and a complex biomechanical process which is hard to reproduce. Today, investigating the relation between electrical activity of muscles and force signals is of high importance in many applications including gait analysis, orthopedics, rehabilitation, ergonomic design, haptic technology, tele-presence surgery and human-machine interaction. Surface...

full text

ارائه مدلی جهت پیش‌بینی قیمت سهام با استفاده از روش‌های فرا ابتکاری و شبکه‌های عصبی

به دلیل پیچیدگی بازار بورس و حجم بالای اطلاعات مورد پردازش، اغلب استفاده از یک سیستم ساده برای پیش‌بینی نتایج خوبی به همراه ندارد. به همین دلیل محققان با ارائه‌ی مدل‌های ترکیبی سعی در ارائه‌ی سیستمی با پیچیدگی کمتر و کارایی و دقت بیشتر کرده‌اند. امروزه از الگوهای مختلفی مانند: تکنیک­های آماری (تحلیل تشخیصی، لوجیت و آنالیز فاکتوری) و تکنیک­های هوش مصنوعی (شبکه­های عصبی، درخت تصمیم­گیری، استدلال ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 11  issue 40

pages  1- 24

publication date 2017-11-22

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023